Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.898
Filtrar
1.
Nat Rev Nephrol ; 20(6): 371-385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38443711

RESUMO

Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.


Assuntos
Podócitos , Podócitos/fisiologia , Humanos , Fenômenos Biomecânicos , Mecanotransdução Celular/fisiologia , Citoesqueleto/fisiologia , Biofísica , Animais , Adesão Celular/fisiologia
2.
Nat Commun ; 14(1): 8011, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049429

RESUMO

The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/fisiologia , Anisotropia , Estresse Mecânico , Citoesqueleto/fisiologia
3.
Curr Opin Cell Biol ; 84: 102214, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544207

RESUMO

Dendrites are intricately designed neuronal compartments that play a vital role in the gathering and processing of sensory or synaptic inputs. Their diverse and elaborate structures are distinct features of neuronal organization and function. Central to the generation of these dendritic arbors is the neuronal cytoskeleton. In this review, we delve into the current progress toward our understanding of how dendrite arbors are generated and maintained, focusing on the role of the actin and microtubule cytoskeleton.


Assuntos
Actinas , Dendritos , Microtúbulos , Citoesqueleto/fisiologia , Neurônios
5.
Biochim Biophys Acta Gen Subj ; 1867(6): 130348, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977439

RESUMO

Cytotoxicity assays are essential tests in studies on the safety and biocompatibility of various substances and on the efficiency of anticancer drugs. The most frequently used assays commonly require application of externally added labels and read only collective response of cells. Recent studies show that the internal biophysical parameters of cells can be associated with the cellular damage. Therefore, using atomic force microscopy, we assessed the changes in the viscoelastic parameters of cells treated with eight different common cytotoxic agents to gain a more systematic view of the occurring mechanical changes. With the robust statistical analysis to account for both the cell-level variability and the experimental reproducibility, we have found that cell softening is a common response after each treatment. More precisely, the combined changes in the viscoelastic parameters of power-law rheology model led to a significant decrease of the apparent elastic modulus. The comparison with the morphological parameters (cytoskeleton and cell shape) demonstrated a higher sensitivity of the mechanical parameters versus the morphological ones. The obtained results support the idea of cell mechanics-based cytotoxicity tests and suggest a common way of a cell responding to damaging actions by softening.


Assuntos
Antineoplásicos , Citoesqueleto , Reprodutibilidade dos Testes , Módulo de Elasticidade , Citoesqueleto/fisiologia , Microscopia de Força Atômica/métodos
6.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768366

RESUMO

Mechanical properties of healthy and Dupuytren fibroblasts were investigated by atomic force microscopy (AFM). In addition to standard force curves, rheological properties were assessed using an oscillatory testing methodology, in which the frequency was swept from 1 Hz to 1 kHz, and data were analyzed using the structural damping model. Dupuytren fibroblasts showed larger apparent Young's modulus values than healthy ones, which is in agreement with previous results. Moreover, cell mechanics were compared before and after ML-7 treatment, which is a myosin light chain kinase inhibitor (MLCK) that reduces myosin activity and hence cell contraction. We employed two different concentrations of ML-7 inhibitor and could observe distinct cell reactions. At 1 µM, healthy and scar fibroblasts did not show measurable changes in stiffness, but Dupuytren fibroblasts displayed a softening and recovery after some time. When increasing ML-7 concentration (3 µM), the majority of cells reacted, Dupuytren fibroblasts were the most susceptible, not being able to recover from the drug and dying. These results suggested that ML-7 is a potent inhibitor for MLCK and that myosin II is essential for cytoskeleton stabilization and cell survival.


Assuntos
Citoesqueleto , Contratura de Dupuytren , Fibroblastos , Microscopia de Força Atômica , Contração Muscular , Cadeias Leves de Miosina , Humanos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Contratura de Dupuytren/tratamento farmacológico , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fenômenos Mecânicos , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/farmacologia , Quinase de Cadeia Leve de Miosina/uso terapêutico , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia
7.
Nat Commun ; 13(1): 6465, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309493

RESUMO

How active stresses generated by molecular motors set the large-scale mechanics of the cell cytoskeleton remains poorly understood. Here, we combine experiments and theory to demonstrate how the emergent properties of a biomimetic active crosslinked gel depend on the properties of its microscopic constituents. We show that an extensile nematic elastomer exhibits two distinct activity-driven instabilities, spontaneously bending in-plane or buckling out-of-plane depending on its composition. Molecular motors play a dual antagonistic role, fluidizing or stiffening the gel depending on the ATP concentration. We demonstrate how active and elastic stresses are set by each component, providing estimates for the active gel theory parameters. Finally, activity and elasticity were manipulated in situ with light-activable motor proteins, controlling the direction of the instability optically. These results highlight how cytoskeletal stresses regulate the self-organization of living matter and set the foundations for the rational design and optogenetic control of active materials.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/fisiologia , Elasticidade , Géis , Elastômeros
9.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139471

RESUMO

Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.


Assuntos
Citoesqueleto , Demência , Senescência Celular/fisiologia , Citoesqueleto/fisiologia , Humanos , Encurtamento do Telômero
10.
PLoS One ; 17(8): e0269208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35969522

RESUMO

The Ajuba LIM protein Jub mediates regulation of Hippo signaling by cytoskeletal tension through interaction with the kinase Warts and participates in feedback regulation of junctional tension through regulation of the cytohesin Steppke. To investigate how Jub interacts with and regulates its distinct partners, we investigated the ability of Jub proteins missing different combinations of its three LIM domains to rescue jub phenotypes and to interact with α-catenin, Warts and Steppke. Multiple regions of Jub contribute to its ability to bind α-catenin and to localize to adherens junctions in Drosophila wing imaginal discs. Co-immunoprecipitation experiments in cultured cells identified a specific requirement for LIM2 for binding to Warts. However, in vivo, both LIM1 and LIM2, but not LIM3, were required for regulation of wing growth, Yorkie activity, and Warts localization. Conversely, LIM2 and LIM3, but not LIM1, were required for regulation of cell shape and Steppke localization in vivo, and for maximal Steppke binding in co-immunoprecipitation experiments. These observations identify distinct functions for the different LIM domains of Jub.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Proteínas com Domínio LIM/fisiologia , Animais , Citoesqueleto/química , Citoesqueleto/fisiologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas com Domínio LIM/análise , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM/análise , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , alfa Catenina/metabolismo
11.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955754

RESUMO

Animal cells display great diversity in their shape. These morphological characteristics result from crosstalk between the plasma membrane and the force-generating capacities of the cytoskeleton macromolecules. Changes in cell shape are not merely byproducts of cell fate determinants, they also actively drive cell fate decisions, including proliferation and differentiation. Global and local changes in cell shape alter the transcriptional program by a multitude of mechanisms, including the regulation of physical links between the plasma membrane and the nuclear envelope and the mechanical modulation of cation channels and signalling molecules. It is therefore not surprising that anomalies in cell shape contribute to several diseases, including cancer. In this review, we discuss the possibility that the constraints imposed by cell shape determine the behaviour of normal and pro-tumour cells by organizing the whole interconnected regulatory network. In turn, cell behaviour might stabilize cells into discrete shapes. However, to progress towards a fully transformed phenotype and to acquire plasticity properties, pro-tumour cells might need to escape these cell shape restrictions. Thus, robust controls of the cell shape machinery may represent a critical safeguard against carcinogenesis.


Assuntos
Citoesqueleto , Neoplasias , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Forma Celular , Citoesqueleto/fisiologia , Neoplasias/genética
12.
Cell Rep ; 40(1): 111049, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793634

RESUMO

The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, our understanding of the physiological roles of PT in sperm is very limited. We show that Calicin interacts with itself and many other PT components, indicating it may serve as an organizing center of the PT assembly. Calicin is detectable first when surrounding the acrosome, then detected around the entire nucleus, and finally translocated to the postacrosomal region of spermatid heads. Intriguingly, loss of Calicin specifically causes surface subsidence of sperm heads in the nuclear condensation stage. Calicin interacts with inner acrosomal membrane (IAM) protein Spaca1 and nuclear envelope (NE) components to form an "IAM-PT-NE" structure. Intriguingly, Ccin-knockout sperm also exhibit DNA damage and failure of fertilization. Our study provides solid animal evidence to suggest that the PT encapsulating sperm nucleus helps shape the sperm head and maintain the nuclear structure.


Assuntos
Proteínas do Citoesqueleto , Sêmen , Cabeça do Espermatozoide , Animais , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Masculino , Camundongos , Sêmen/metabolismo , Cabeça do Espermatozoide/metabolismo , Cabeça do Espermatozoide/fisiologia
13.
Nat Chem ; 14(8): 958-963, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35725773

RESUMO

The cytoskeleton is an essential component of a cell. It controls the cell shape, establishes the internal organization, and performs vital biological functions. Building synthetic cytoskeletons that mimic key features of their natural counterparts delineates a crucial step towards synthetic cells assembled from the bottom up. To this end, DNA nanotechnology represents one of the most promising routes, given the inherent sequence specificity, addressability and programmability of DNA. Here we demonstrate functional DNA-based cytoskeletons operating in microfluidic cell-sized compartments. The synthetic cytoskeletons consist of DNA tiles self-assembled into filament networks. These filaments can be rationally designed and controlled to imitate features of natural cytoskeletons, including reversible assembly and ATP-triggered polymerization, and we also explore their potential for guided vesicle transport in cell-sized confinement. Also, they possess engineerable characteristics, including assembly and disassembly powered by DNA hybridization or aptamer-target interactions and autonomous transport of gold nanoparticles. This work underpins DNA nanotechnology as a key player in building synthetic cells.


Assuntos
Células Artificiais , Nanopartículas Metálicas , Citoesqueleto/fisiologia , DNA , Ouro , Nanotecnologia
14.
Nat Rev Cardiol ; 19(6): 364-378, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440741

RESUMO

The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the 'tubulin code' have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation-contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.


Assuntos
Citoesqueleto , Insuficiência Cardíaca , Citoesqueleto/patologia , Citoesqueleto/fisiologia , Insuficiência Cardíaca/patologia , Humanos , Microtúbulos/patologia , Microtúbulos/fisiologia , Miócitos Cardíacos/patologia , Tubulina (Proteína)
15.
Sci Rep ; 12(1): 2082, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136073

RESUMO

Oxidative stress triggers axon degeneration and cell death, leading to the development of neurodegenerative diseases. Spinal motor nerves project very long axons, increasing the burden on axonal transport and metabolism. As such, spinal motor nerves are expected to be susceptible to oxidative stress, but model systems for visualizing and investigating acutely degenerating motor axons are limited. In this study, we establish motor nerve organoids from human pluripotent stem cells (hPSCs) with properties similar to those of neuromesodermal progenitors (NMPs), a population of progenitor cells that comprise the caudal spinal cord. Three-dimensional differentiation of organoids efficiently gave rise to mature motor neurons within 18 days. Adherent organoids showed robust axon fascicles and active growth cones under normal conditions. In addition, more homogenous and efficient generation of motor neurons were achieved when organoids were dissociated into individual cells. Hydrogen peroxide-induced oxidative stress resulted in a broad range of signs of axon degeneration including the disappearance of growth cones and neurites, axon retraction, axon fragmentation and bleb formation, and apoptotic cell death, whose severity can be reliably quantifiable in our culture system. Remarkably, cytoskeletal drugs modulating actin or microtubule turnover differentially facilitated axon dynamics and increased axon regenerative potential. Taken together, our motor nerve organoid model could be potentially useful for drug screens evaluating the rearrangement of cytoskeletons in regenerating motor axons.


Assuntos
Axônios/fisiologia , Citoesqueleto/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Regeneração Nervosa , Humanos , Células-Tronco Pluripotentes Induzidas , Organoides
16.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165179

RESUMO

Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow [J.-L. Maître et al., Science 338, 253-256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension-stabilizing E-cadherin-actin complexes at the contact.


Assuntos
Caderinas/metabolismo , Células Germinativas/fisiologia , Células-Tronco/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Caderinas/fisiologia , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Citoesqueleto/fisiologia , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Peixe-Zebra/metabolismo , alfa Catenina/metabolismo
17.
FASEB J ; 36(2): e22114, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076958

RESUMO

Decades of spaceflight studies have provided abundant evidence that individual cells in vitro are capable of sensing space microgravity and responding with cellular changes both structurally and functionally. However, how microgravity is perceived, transmitted, and converted to biochemical signals by single cells remains unrevealed. Here in this review, over 40 cellular biology studies of real space fights were summarized. Studies on cells of the musculoskeletal system, cardiovascular system, and immune system were covered. Among all the reported cellular changes in response to space microgravity, cytoskeleton (CSK) reorganization emerges as a key indicator. Based on the evidence of CSK reorganization from space flight research, a possible mechanism from the standpoint of "cellular mechanical equilibrium" is proposed for the explanation of cellular response to space microgravity. Cytoskeletal equilibrium is broken by the gravitational change from ground to space and is followed by cellular morphological changes, cell mechanical properties changes, extracellular matrix reorganization, as well as signaling pathway activation/inactivation, all of which ultimately lead to the cell functional changes in space microgravity.


Assuntos
Citoesqueleto/fisiologia , Humanos , Sistema Imunitário/fisiologia , Transdução de Sinais/fisiologia , Voo Espacial/métodos , Ausência de Peso
18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086931

RESUMO

We study a reconstituted composite system consisting of an active microtubule network interdigitated with a passive network of entangled F-actin filaments. Increasing the concentration of filamentous actin controls the emergent dynamics, inducing a transition from turbulent-like flows to bulk contractions. At intermediate concentrations, where the active stresses change their symmetry from anisotropic extensile to isotropic contracting, the composite separates into layered asters that coexist with the background turbulent fluid. Contracted onion-like asters have a radially extending microtubule-rich cortex that envelops alternating layers of microtubules and F-actin. These self-regulating structures undergo internal reorganization, which appears to minimize the surface area and maintain the ordered layering, even when undergoing aster merging events. Finally, the layered asters are metastable structures. Their lifetime, which ranges from minutes to hours, is encoded in the material properties of the composite. These results challenge the current models of active matter. They demonstrate self-organized dynamical states and patterns evocative of those observed in the cytoskeleton do not require precise biochemical regulation, but can arise from purely mechanical interactions of actively driven filamentous materials.


Assuntos
Actinas/metabolismo , Microtúbulos/metabolismo , Movimento/fisiologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Actinas/química , Citoesqueleto/fisiologia , Humanos , Microtúbulos/química , Microtúbulos/fisiologia , Contração Muscular/fisiologia
19.
Acta Physiol (Oxf) ; 234(3): e13783, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990060

RESUMO

Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin-associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Citoesqueleto , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/fisiologia , Camundongos , Neurônios/fisiologia
20.
Commun Biol ; 5(1): 5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013510

RESUMO

Lysosome axonal transport is important for the clearance of cargoes sequestered by the endocytic and autophagic pathways. Building on observations that mutations in the JIP3 (MAPK8IP3) gene result in lysosome-filled axonal swellings, we analyzed the impact of JIP3 depletion on the cytoskeleton of human neurons. Dynamic focal lysosome accumulations were accompanied by disruption of the axonal periodic scaffold (spectrin, F-actin and myosin II) throughout each affected axon. Additionally, axonal microtubule organization was locally disrupted at each lysosome-filled swelling. This local axonal microtubule disorganization was accompanied by accumulations of both F-actin and myosin II. These results indicate that transport of axonal lysosomes is functionally interconnected with mechanisms that control the organization and maintenance of the axonal cytoskeleton. They have potential relevance to human neurological disease arising from JIP3 mutations as well as for neurodegenerative diseases associated with the focal accumulations of lysosomes within axonal swellings such as Alzheimer's disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transporte Axonal , Axônios/fisiologia , Citoesqueleto/fisiologia , Lisossomos/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transporte Biológico , Humanos , Proteínas do Tecido Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA